Europe’s Blue Hydrogen Plans Risk Generating Annual Emissions on par With Denmark – DeSmog

Europe’s Blue Hydrogen Plans Risk Generating Annual Emissions on par With Denmark – DeSmog

This story is the fourth part of a DeSmog series on carbon capture and was developed with the support of Journalismfund Europe and published in partnership with Le Monde.

Billed by the fossil fuel industry as a climate solution, dozens of planned blue hydrogen projects in Europe could consume more natural gas each year than France, and produce emissions on a par with Denmark, a DeSmog analysis has found.

The findings raise new questions over blue hydrogen’s climate impact as EU officials deliberate over technical standards that could allow the technology to count as “low-carbon” — and thus qualify for billions of euros in subsidies. 

The term blue hydrogen is used to describe hydrogen made from natural gas, where carbon capture and storage (CCS) technology is deployed to trap much of the large amounts of carbon dioxide (CO2) generated during the production process, then bury it underground. 

Hydrogen emits no CO2 at the point of use. If produced cleanly, the molecule is theoretically capable of decarbonising various sectors, including chemicals and petrochemicals, steel, cement, power, road transport and potentially aviation.

Although Europe has yet to produce any blue hydrogen at scale, Shell, BP, Equinor, TotalEnergies, Eni, and ExxonMobil are among dozens of oil and gas companies promoting the technology as a way of meeting climate goals. 

However, industry has yet to provide the kind of comprehensive data needed to estimate how far any possible climate benefits from switching to blue hydrogen produced by the planned projects may offset the residual CO2 emissions and methane leaks associated with making it. 

To begin to fill this gap, DeSmog teamed up with Christophe Coutanceau, a professor at the Institute of Chemistry of Poitiers: Materials and Natural Resources, and co-lead of a hydrogen working group at the French National Centre for Scientific Research, known by its French acronym CNRS. [Details of the methodology used can be found at the end of this story].

By reviewing extensive industry reports and technical data on 46 proposed blue hydrogen projects in the EU, UK and Norway listed by the Paris-based International Energy Agency (IEA), DeSmog found that 27 involve building new hydrogen production facilities. Another 15 envisage retrofitting existing hydrogen plants with carbon capture, while the status of four remained undetermined. More than a third of the total volume of hydrogen gas produced by these 46 projects would be used for oil refining — the main use of hydrogen today, according to a DeSmog tally of available data.

In collaboration with Coutanceau, DeSmog estimated that these 27 new blue hydrogen facilities could consume 48 billion cubic metres (bcm) of natural gas each year —  about a tenth of the total consumption in the EU, UK and Norway in 2022 (499 bcm), and more than the annual amount of gas burned in France (38 bcm). 

DeSmog’s analysis estimated the total annual emissions associated with the 46 planned blue hydrogen projects at 38 million tonnes of CO2 equivalent (CO2e) — about as much as Denmark or Switzerland emitted in 2022 (42 million tonnes of CO2). Our calculations factored in methane leaks in the natural gas supply chain and the partial efficiency of carbon capture units.

A further 33 million tonnes of CO2 could be released while the plants are being built in the one-off process used to manufacture the amine-based solvent used in the most common types of capture units, the analysis found.

Lorenzo Sani, power analyst at financial think tank Carbon Tracker, who reviewed DeSmog’s methodology and findings, said :

We should be very cautious with blue hydrogen. We should not buy into a false sense of complacency that it is a low-carbon fuel,

“A badly managed development of blue hydrogen will increase carbon emissions while creating new gas demand that risks extending energy security concerns.”

The concerns were echoed by Paul Martin, a chemical engineer and decarbonisation consultant at Spitfire Research, who also reviewed the findings.

Martin said,

This analysis confirms the fact that so-called ‘blue’ hydrogen is rather ‘blackish blue

“Even technological innovations in the field of hydrogen production from fossil gas don’t change this.”

Coutanceau, the CNRS hydrogen expert, underscored the huge scale of the task fossil fuel companies face in realising plans to sequester the captured CO2 in disused oilfields in the North Sea.

Coutanceau said,

In addition to the tens of million tonnes of CO2 equivalent that blue hydrogen projects would release every year, what are we going to do with the captured CO2?

“There’s talk of underground storage in saline cavities, but to my knowledge this infrastructure doesn’t yet exist on an industrial scale.”

In April, workers began boring a hole under the seawall at the Port of Rotterdam, marking the start of construction of the Porthos carbon capture and storage project — which aims to start sequestering CO2 captured at two planned blue hydrogen projects in a disused offshore gas field from 2026. 

Equinor, Shell and TotalEnergies plan to store millions of tonnes of CO2 under the North Sea in their  Northern Lights joint venture, which opened a storage facility near Bergen last month. Equinor says the project will initially store 1.5 million tonnes of CO2 a year — with that capacity already committed to ammonia, cement and bioenergy plants. 

Lack of Data

Hydrogen Europe, an industry association grouping hundreds of companies — ranging from Shell and BP, to utilities and engineering firms — dismissed concerns over the potential emissions footprint of the planned blue hydrogen projects, saying substituting blue hydrogen for fossil fuels would have a net climate benefit.

Jorgo Chatzimarkakis, Hydrogen Europe’s CEO, told DeSmog in an interview.

You want me to admit that we have a lot of CO2 emissions because of blue [hydrogen]. That’s not true,

“You have to look at the big picture: With blue hydrogen, there will be fewer CO2 emissions than if you used natural gas as your [source of fuel]. You criticize the fact that we’re reducing emissions. I don’t understand the logic.” 

According to the Hydrogen Council, a global trade association, producing one kilogram of blue hydrogen using natural gas and a high level of capture (90 to 98 percent) would emit a maximum of 3.9 kilograms of CO2 — 70 percent less than a conventional hydrogen plant. 

However, it’s difficult to independently estimate the decarbonisation potential of the planned blue hydrogen projects without access to data showing how the gas will be used, and thus how far it might reduce demand for fossil fuels.

Coutanceau said,

For now, we don’t have enough data,

“To arrive at a precise calculation of avoided emissions, we’d need to know whether the hydrogen would be used as a feedstock in a manufacturing process, to produce heat, or used in fuel cells to produce electricity. It’s not the same [decarbonisation] gain.”

Hydrogen Europe declined to respond to DeSmog’s request for an estimate for the quantity of CO2 emissions that could be saved by the 46 proposed blue hydrogen projects. The Global CCS Institute, an oil and gas industry body, did not respond to a request for comment. 

Regarded as one of the most authoritative models for decarbonising the energy system, the IEA’s Net Zero by 2050 Roadmap sees an increase in global blue hydrogen production capacity to 18 million tonnes (Mt) by 2030 from the negligible amounts produced today. But the 46 planned blue hydrogen projects in Europe alone would produce 10 million tonnes of blue hydrogen — or more than half the global total needed in the IEA scenario, DeSmog found. 

Only a handful of the proposed projects have received a final investment decision, meaning there is no guarantee they will all be built. Nevertheless, climate advocates say the discrepancy between the scale of the proposed build-out, and the Net Zero 2050 roadmap, raises questions over whether industry is intent on using blue hydrogen to preserve demand for natural gas, even as Europe transitions away from fossil fuels.  

‘Make-or-Break Moment’

Fossil fuel companies, utilities and industrial gas producers are vying for a share of a cumulative total of $100 billion in state support for hydrogen projects that had been announced by EU member states and other European countries by 2023, according to data from BloombergNEF.    

Some climate groups are urging governments to back “green” hydrogen — the term used for hydrogen produced in an emissions-free but energy-intensive process powered by wind and solar. In contrast to blue hydrogen’s reliance on natural gas as a feedstock, green hydrogen is made using large quantities of water. 

The EU has set up Hydrogen Bank to help scale up the technology, with the Renewable Energy Directive stipulating that 42 percent of hydrogen used in industry will have to be produced solely from renewable energy sources by 2030, and 60 percent by 2035. 

But environmental groups are concerned that industry lobbyists may convince the European Commission to shift those obligations from green hydrogen to a more loosely defined “low-carbon” hydrogen — which would include blue hydrogen projects. That could crowd out investment in green hydrogen, which is much costlier to produce.  

Geert De Cock, electricity and energy manager at Transport & Environment, a Brussels-based research and advocacy group, told DeSmog., said:

If selection is based solely on price, since blue hydrogen will be cheaper than green hydrogen, blue hydrogen projects will [win out] and will make green hydrogen disappear,

“In my opinion, this is a frontal attack on green hydrogen.”

In April, Transport & Environment and other environmental groups, joined by wind and solar companies, wrote an open letter urging the European Commission to adopt a “robust definition” for low-carbon hydrogen, with stringent conditions attached to blue hydrogen production.

The Renewable Hydrogen Coalition, environmental tank Bellona, and the Environmental Defense Fund were among signatories urging Commissioner for Energy Kadri Simson and Commission Vice-President Maroš Šefčovič to ensure the new rules reflected the entirety of greenhouse gas emissions associated with a particular blue hydrogen project; set a minimum rate of carbon capture; and set maximum rates for methane leakage. 

The letter’s signatories also call for a guarantee that any blue hydrogen to qualify as “low-carbon”, will only be produced from existing (not additional) gas production capacity.

De Cock said,

If the rules are sufficiently strict, the new [blue hydrogen] projects will not happen,

“It is really make-or-break for the industry.” 

Betting on Blue

Today, almost all industrial hydrogen is of the “grey” variety, where the CO2 emitted during the process of making it from natural gas is vented into the atmosphere, accounting for about two percent of global CO2 emissions, according to the IEA. About half of this hydrogen is used in oil refining, where the gas is used to strip sulphur from refined products, and make diesel and other oils.

Some climate advocates suspect that the fossil fuel industry is backing blue hydrogen in part because the resulting demand for natural gas will serve to prolong the useful life of existing gas deposits, drilling rigs, pipelines and other infrastructure. That could reduce the risk that the EU’s goal to slash carbon emissions by 55 percent by 2030 will saddle oil and gas companies with billions of euros of stranded assets.

In the Netherlands, site of 12 of the 46 proposed blue hydrogen projects, U.S. industrial gases company Air Products and French rival Air Liquide have announced plans to retrofit their existing grey hydrogen plants in the Port of Rotterdam with carbon capture equipment to produce blue hydrogen.

Air Products says on its website. 

Hydrogen plays a critical role in the energy transition and in mitigating the effects of climate change,

The captured CO2 will be handled by Porthos, a joint venture between state-owned firms Energie Beheer Nederland, Gasunie, and the Port of Rotterdam Authority. The project aims to store 2.5 million tonnes of CO2 captured annually from various industries in depleted gas fields under the North Sea for 15 years, starting in 2026.

Elsewhere in the Netherlands, in the maritime province of Zeeland, Air Liquide is building a new plant to supply blue hydrogen to Zeeland Refinery, a joint venture between TotalEnergies and Russia’s Lukoil. Air Liquide is also participating in the Kairos@C project in the Belgian port of Antwerp, which aims to capture more than 14 million tonnes of CO2 over its first 10 years of operations, including from two blue hydrogen plants

6 the company says on its web page,

The Group has a complete portfolio of technological solutions and services to support the decarbonisation of its customers around the world,

Air Liquide said in its 2022 strategic plan

American-German gas manufacturer Linde, which is headquartered in the UK, also sees blue hydrogen as a growth opportunity.

Blue hydrogen is the next step,

“Gray and blue hydrogen are important stepping stones on the path to green hydrogen as they will allow for the necessary frameworks and infrastructures to be developed while green hydrogen production reaches the necessary scale.” 

READ the latest news shaping the hydrogen market at Hydrogen Central

Europe’s Blue Hydrogen Plans Risk Generating Annual Emissions on par With Denmark – DeSmog, source

Leave a Reply