Allahverdyan, A. E., Balian, R. & Nieuwenhuizen, T. M. Maximal work extraction from finite quantum systems. Europhys. Lett. 67, 565 (2004).

Article 
ADS 
CAS 

Google Scholar
 

Breuer, H.-P. & Petruccione, F. The Theory of Open Quantum Systems (Oxford University Press, 2007).

Book 

Google Scholar
 

Rossnagel, J. et al. A single-atom heat engine. Science 352, 325 (2016).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Ono, K., Shevchenko, S. N., Mori, T., Moriyama, S. & Nori, F. Analog of a quantum heat engine using a single-spin qubit. Phys. Rev. Lett. 125, 166802 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Bouton, Q. et al. A quantum heat engine driven by atomic collisions. Nat. Commun. 12, 2063 (2021).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Maslennikov, G. et al. Quantum absorption refrigerator with trapped ions. Nat. Commun. 10, 202 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Joshi, J. & Mahesh, T. S. Experimental investigation of a quantum battery using star-topology NMR spin systems. Phys. Rev. A 106, 042601 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Tabesh, F. T., Kamin, F. H. & Salimi, S. Environment-mediated charging process of quantum batteries. Phys. Rev. A 102(5), 052223 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Kamin, F. H., Abuali, Z., Ness, H. & Salimi, S. Quantum battery charging by non-equilibrium steady-state currents. J. Phys. A Math. Theor. 56(27), 275302 (2023).

Article 
MathSciNet 

Google Scholar
 

Kamin, F. H., Salimi, S. & Arjmandi, M. B. Steady-state charging of quantum batteries via dissipative ancillas. Phys. Rev. A 109(2), 022226 (2024).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Hadipour, M., Haseli, S., Wang, D. & Haddadi, S. Proposed scheme for a cavity-based quantum battery. Adv. Quantum Technol.. https://doi.org/10.1002/qute.202400115 (2024).

Article 

Google Scholar
 

Hadipour, M. & Haseli, S. Enhancing the efficiency of open quantum batteries via adjusting the classical driving field. Results Phys. 64, 107928 (2024).

Article 

Google Scholar
 

Hadipour, M. & Haseli, S. Extracting work from two gravitational cat states. EPL 147, 29003 (2024).

Article 

Google Scholar
 

Zhu, G., Chen, Y., Hasegawa, Y. & Xue, P. Charging quantum batteries via indefinite causal order: Theory and experiment. Phys. Rev. Lett. 131, 240401 (2023).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Andolina, G. M. et al. Charger-mediated energy transfer in exactly solvable models for quantum batteries. Phys. Rev. B 98, 205423 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Le, T. P., Levinsen, J., Modi, K., Parish, M. M. & Pollock, F. A. Spin-chain model of a many-body quantum battery. Phys. Rev. A 97, 022106 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Zhang, Y.-Y., Yang, T.-R., Fu, L. & Wang, X. Powerful harmonic charging in a quantum battery. Phys. Rev. E 99, 052106 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Barra, F. Dissipative charging of a quantum battery. Phys. Rev. Lett. 122, 210601 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Santos, A. C., Çakmak, B., Campbell, S. & Zinner, N. T. Stable adiabatic quantum batteries. Phys. Rev. E 100, 032107 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Andolina, G. M. et al. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Crescente, A., Carrega, M., Sassetti, M. & Ferraro, D. Ultrafast charging in a two-photon Dicke quantum battery. Phys. Rev. B 102, 245407 (2020).

Article 
ADS 
CAS 

Google Scholar
 

Santos, A. C., Saguia, A. & Sarandy, M. S. Stable and charge-switchable quantum batteries. Phys. Rev. E 101, 062114 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Santos, A. C. Quantum advantage of two-level batteries in the self-discharging process. Phys. Rev. E 103, 042118 (2021).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Ghosh, S., Chanda, T., Mal, S. & De Sen, A. Fast charging of a quantum battery assisted by noise. Phys. Rev. A 104, 032207 (2021).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Delmonte, A., Crescente, A., Carrega, M., Ferraro, D. & Sassetti, M. Characterization of a two-photon quantum battery: Initial conditions, stability and work extraction. Entropy 23, 612 (2021).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Li, J. L., Shen, H. Z. & Yi, X. X. Quantum batteries in non-Markovian reservoirs. Opt. Lett. 47, 5614 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Dou, F.-Q., Lu, Y.-Q., Wang, Y.-J. & Sun, J.-A. Extended Dicke quantum battery with interatomic interactions and driving field. Phys. Rev. B 105, 115405 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Barra, F., Hovhannisyan, K. V. & Imparato, A. Quantum batteries at the verge of a phase transition. New J. Phys. 24, 015003 (2022).

Article 
ADS 
MathSciNet 

Google Scholar
 

Carrasco, J., Maze, J. R., Hermann-Avigliano, C. & Barra, F. Collective enhancement in dissipative quantum batteries. Phys. Rev. E 105, 064119 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Shaghaghi, V., Singh, V., Benenti, G. & Rosa, D. Micromasers as quantum batteries. Quantum Sci. Technol. 7, 04LT01 (2022).

Article 

Google Scholar
 

Rodríguez, C., Rosa, D. & Olle, J. Artificial intelligence discovery of a charging protocol in a micromaser quantum battery. Phys. Rev. A 108, 042618 (2023).

Article 
ADS 

Google Scholar
 

Santos, T. F. F., de Almeida, Y. V. & Santos, M. F. Vacuum-enhanced charging of a quantum battery. Phys. Rev. A 107, 032203 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Downing, C. A. & Ukhtary, M. S. A quantum battery with quadratic driving. Commun. Phys. 6, 322 (2023).

Article 

Google Scholar
 

Gemme, G., Andolina, G. M., Pellegrino, F. M. D., Sassetti, M. & Ferraro, D. Off-resonant Dicke quantum battery: Charging by virtual photons. Batteries 9, 197 (2023).

Article 

Google Scholar
 

Shaghaghi, V., Singh, V., Carrega, M., Rosa, D. & Benenti, G. Lossy micromaser battery: Almost pure states in the Jaynes–Cummings regime. Entropy 25, 430 (2023).

Article 
ADS 
PubMed 
PubMed Central 

Google Scholar
 

Dou, F.-Q. & Yang, F.-M. Superconducting transmon qubit-resonator quantum battery. Phys. Rev. A 107, 023725 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Gumberidze, M., Kolar, M. & Filip, R. Measurement induced synthesis of coherent quantum batteries. Sci. Rep. 9, 19628 (2019).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Kamin, F. H., Tabesh, F. T., Salimi, S. & Santos, A. C. Entanglement, coherence, and charging process of quantum batteries. Phys. Rev. E 102, 052109 (2020).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Shi, H.-L., Ding, S., Wan, Q.-K., Wang, X.-H. & Yang, W.-L. Entanglement, coherence, and extractable work in quantum batteries. Phys. Rev. Lett. 129, 130602 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Arjmandi, M. B., Shokri, A., Faizi, E. & Mohammadi, H. Performance of quantum batteries with correlated and uncorrelated chargers. Phys. Rev. A 106, 062609 (2022).

Article 
ADS 
CAS 

Google Scholar
 

Arjmandi, M. B., Mohammadi, H., Saguia, A., Sarandy, M. S. & Santos, A. C. Localization effects in disordered quantum batteries. Phys. Rev. E 108, 064106 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Farina, D., Andolina, G. M., Mari, A., Polini, M. & Giovannetti, V. Charger-mediated energy transfer for quantum batteries: An open-system approach. Phys. Rev. B 99, 035421 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Carrega, M., Crescente, A., Ferraro, D. & Sassetti, M. Dissipative dynamics of an open quantum battery. New J. Phys. 22, 083085 (2020).

Article 
ADS 

Google Scholar
 

Kamin, F. H., Tabesh, F. T., Salimi, S., Kheirandish, F. & Santos, A. C. Non-Markovian effects on charging and self-discharging process of quantum batteries. New J. Phys. 22, 083007 (2020).

Article 
ADS 
MathSciNet 

Google Scholar
 

Zakavati, S., Tabesh, F. T. & Salimi, S. Bounds on charging power of open quantum batteries. Phys. Rev. E 104, 054117 (2021).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Xu, K., Zhu, H.-J., Zhang, G.-F. & Liu, W.-M. Enhancing the performance of an open quantum battery via environment engineering. Phys. Rev. E 104, 064143 (2021).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Arjmandi, M. B., Mohammadi, H. & Santos, A. C. Enhancing self-discharging process with disordered quantum batteries. Phys. Rev. E 105, 054115 (2022).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Song, M.-L., Li, L.-J., Song, X.-K., Ye, L. & Wang, D. Environment-mediated entropic uncertainty in charging quantum batteries. Phys. Rev. E 106, 054107 (2022).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Hadipour, M., Haseli, S., Dolatkhah, H. & Rashidi, M. Study the charging process of moving quantum batteries inside cavity. Sci. Rep. 13, 10672 (2023).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Mojaveri, B., Jafarzadeh Bahrbeig, R., Fasihi, M. A. & Babanzadeh, S. Enhancing the direct charging performance of an open quantum battery by adjusting its velocity. Sci. Rep. 13, 19827 (2023).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Xu, K., Zhu, H.-J., Zhu, H., Zhang, G.-F. & Liu, W.-M. Charging and self-discharging process of a quantum battery in composite environments. Front. Phys. 18, 31301 (2023).

Article 
ADS 

Google Scholar
 

Morrone, D., Rossi, M. A. C., Smirne, A. & Genoni, M. G. Charging a quantum battery in a non-Markovian environment: A collisional model approach. Quantum Sci. Technol. 8, 035007 (2023).

Article 
ADS 

Google Scholar
 

Catalano, A. G., Giampaolo, S. M., Morsch, O., Giovannetti, V. & Franchini, F. Frustrating quantum batteries. Preprint at arXiv:2307.02529 (2023).

Mojaveri, B., Bahrbeig, R. J., & Fasihi, M. A. Charging a quantum battery mediated by parity-deformed fields. Preprint at arXiv:2405.11356 (2024).

Alicki, R. The quantum open system as a model of the heat engine. J. Phys. A 12, L103 (1979).

Article 
ADS 

Google Scholar
 

Scully, M. O., Chapin, K. R., Dorfman, K. E., Kim, M. B. & Svidzinsky, A. Quantum heat engine power can be increased by noise-induced coherence. Proc. Natl. Acad. Sci. U.S.A. 108, 15097 (2011).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Rahav, S., Harbola, U. & Mukamel, S. Heat fluctuations and coherences in a quantum heat engine. Phys. Rev. A 86, 043843 (2012).

Article 
ADS 

Google Scholar
 

Brunner, N. et al. Entanglement enhances cooling in microscopic quantum refrigerators. Phys. Rev. E 89, 032115 (2014).

Article 
ADS 

Google Scholar
 

Mitchison, M. T., Woods, M. P., Prior, J. & Huber, M. Coherence-assisted single-shot cooling by quantum absorption refrigerators. New J. Phys. 17, 115013 (2015).

Article 
ADS 

Google Scholar
 

Jaramillo, J., Beau, M. & del Campo, A. Quantum supremacy of many-particle thermal machines. New J. Phys. 18, 075019 (2016).

Article 
ADS 

Google Scholar
 

Watanabe, G., Venkatesh, B. P., Talkner, P. & del Campo, A. Quantum performance of thermal machines over many cycles. Phys. Rev. Lett. 118, 050601 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Brandner, K., Bauer, M. & Seifert, U. Universal coherence-induced power losses of quantum heat engines in linear response. Phys. Rev. Lett. 119, 170602 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Klaers, J., Faelt, S., Imamoglu, A. & Togan, E. Squeezed thermal reservoirs as a resource for a nanomechanical engine beyond the Carnot limit. Phys. Rev. X 7, 031044 (2017).


Google Scholar
 

Kilgour, M. & Segal, D. Coherence and decoherence in quantum absorption refrigerators. Phys. Rev. E 98, 012117 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Holubec, V. & Novotny, T. Effects of noise-induced coherence on the performance of quantum absorption refrigerators. J. Low Temp. Phys. 192, 147 (2018).

Article 
ADS 
CAS 

Google Scholar
 

Klatzow, J. et al. Experimental demonstration of quantum effects in the operation of microscopic heat engines. Phys. Rev. Lett. 122, 110601 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Buffoni, L., Solfanelli, A., Verrucchi, P., Cuccoli, A. & Campisi, M. Quantum measurement cooling. Phys. Rev. Lett. 122, 070603 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Dann, R. & Kosloff, R. Quantum signatures in the quantum Carnot cycle. New J. Phys. 22, 013055 (2020).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Karimi, B. & Pekola, J. P. Otto refrigerator based on a superconducting qubit: Classical and quantum performance. Phys. Rev. B 94, 184503 (2016).

Article 
ADS 

Google Scholar
 

Pekola, J. P., Karimi, B., Thomas, G. & Averin, D. V. Supremacy of incoherent sudden cycles. Phys. Rev. B 100, 085405 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Peterson, J. P. S. et al. Experimental characterization of a spin quantum heat engine. Phys. Rev. Lett. 123, 240601 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Funo, K., Watanabe, Y. & Ueda, M. Thermodynamic work gain from entanglement. Phys. Rev. A 88, 052319 (2013).

Article 
ADS 

Google Scholar
 

Hovhannisyan, K. V., Perarnau-Llobet, M., Huber, M. & Acín, A. Entanglement generation is not necessary for optimal work extraction. Phys. Rev. Lett. 111, 240401 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Skrzypczyk, P., Short, A. J. & Popescu, S. Work extraction and thermodynamics for individual quantum systems. Nat. Commun. 5, 4185 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Perarnau-Llobet, M. et al. Extractable work from correlations. Phys. Rev. X 5, 041011 (2015).


Google Scholar
 

Korzekwa, K., Lostaglio, M., Oppenheim, J. & Jennings, D. The extraction of work from quantum coherence. New J. Phys. 18, 023045 (2016).

Article 
ADS 

Google Scholar
 

Elouard, C., Herrera-Martí, D., Huard, B. & Auffeves, A. Extracting work from quantum measurement in Maxwell’s demon engines. Phys. Rev. Lett. 118, 260603 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Cottet, N. et al. Observing a quantum Maxwell demon at work. Proc. Natl. Acad. Sci. U.S.A. 114, 7561 (2017).

Article 
ADS 
CAS 
PubMed 
PubMed Central 

Google Scholar
 

Manzano, G., Plastina, F. & Zambrini, R. Optimal work extraction and thermodynamics of quantum measurements and correlations. Phys. Rev. Lett. 121, 120602 (2018).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Morris, B., Lami, L. & Adesso, G. Assisted work distillation, assisted work distillation. Phys. Rev. Lett. 122, 130601 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Vitagliano, G., Klöckl, C., Huber, M. & Friis, N. Chap. 30 trade-off between work and correlations in quantum thermodynamics. In Thermodynamics in the Quantum Regime 731–750 (Springer, 2019).


Google Scholar
 

Monsel, J., Fellous-Asiani, M., Huard, B. & Auffèves, A. The energetic cost of work extraction. Phys. Rev. Lett. 124, 130601 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Giorgi, G.-L. & Campbell, S. Correlation approach to work extraction from finite quantum systems. J. Phys. B 48, 035501 (2015).

Article 
ADS 

Google Scholar
 

Francica, G., Goold, J., Plastina, F. & Paternostro, M. Daemonic ergotropy: Enhanced work extraction from quantum correlations. NPJ Quantum Inf. 3, 12 (2017).

Article 
ADS 

Google Scholar
 

Bernards, F., Kleinmann, M., Gühne, O. & Paternostro, M. Daemonic ergotropy: Generalised measurements and multipartite settings. Entropy 21, 771 (2019).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Allahverdyan, A. E. Nonequilibrium quantum fluctuations of work. Phys. Rev. E 90, 032137 (2014).

Article 
ADS 
CAS 

Google Scholar
 

Talkner, P. & Hänggi, P. Aspects of quantum work. Phys. Rev. E 93, 022131 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Perarnau-Llobet, M., Bäumer, E., Hovhannisyan, K. V., Huber, M. & Acin, A. No-go theorem for the characterization of work fluctuations in coherent quantum systems. Phys. Rev. Lett. 118, 070601 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Solinas, P. & Gasparinetti, S. Probing quantum interference effects in the work distribution. Phys. Rev. A 94, 052103 (2016).

Article 
ADS 

Google Scholar
 

Solinas, P., Miller, H. J. D. & Anders, J. Measurement-dependent corrections to work distributions arising from quantum coherences. Phys. Rev. A 96, 052115 (2017).

Article 
ADS 

Google Scholar
 

Lostaglio, M. Quantum fluctuation theorems. Phys. Rev. Lett. 120, 040602 (2018).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Åberg, J. Fully quantum fluctuation theorems. Phys. Rev. X 8, 011019 (2018).


Google Scholar
 

Alicki, R. & Fannes, M. Entanglement boost for extractable work from ensembles of quantum batteries. Phys. Rev. E 87, 042123 (2013).

Article 
ADS 

Google Scholar
 

Binder, F. C., Vinjanampathy, S., Modi, K. & Goold, J. Quantacell: Powerful charging of quantum batteries. New J. Phys. 17, 075015 (2015).

Article 
ADS 

Google Scholar
 

Campaioli, F. et al. Enhancing the charging power of quantum batteries. Phys. Rev. Lett. 118, 150601 (2017).

Article 
ADS 
PubMed 

Google Scholar
 

Ferraro, D., Campisi, M., Andolina, G. M., Pellegrini, V. & Polini, M. High-power collective charging of a solid-state quantum battery. Phys. Rev. Lett.120, 117702 (2018).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Andolina, G. M. et al. Extractable work, the role of correlations, and asymptotic freedom in quantum batteries. Phys. Rev. Lett. 122, 047702 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Julia-Farre, S., Salamon, T., Riera, A., Bera, M. N. & Lewenstein, M. Bounds on the capacity and power of quantum batteries. Phys. Rev. Res. 2, 023113 (2020).

Article 
CAS 

Google Scholar
 

García-Pintos, L. P., Hamma, A. & del Campo, A. Fluctuations in extractable work bound the charging power of quantum batteries. Phys. Rev. Lett. 125, 040601 (2020).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Baumgratz, T., Cramer, M. & Plenio, M. B. Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Streltsov, A., Adesso, G. & Plenio, M. B. Colloquium: Quantum coherence as a resource. Rev. Mod. Phys. 89, 041003 (2017).

Article 
ADS 
MathSciNet 

Google Scholar
 

Åberg, J. Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Lostaglio, M., Jennings, D. & Rudolph, T. Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Lostaglio, M., Korzekwa, K., Jennings, D. & Rudolph, T. Quantum coherence, time-translation symmetry, and thermodynamics. Phys. Rev. X 5, 021001 (2015).


Google Scholar
 

Uzdin, R., Levy, A. & Kosloff, R. Equivalence of quantum heat machines, and quantum-thermodynamic signatures. Phys. Rev. X 5, 031044 (2015).


Google Scholar
 

Kammerlander, P. & Anders, J. Coherence and measurement in quantum thermodynamics. Sci. Rep. 6, 22174 (2016).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Kallush, S., Aroch, A. & Kosloff, R. Quantifying the unitary generation of coherence from thermal quantum systems. Entropy 21, 810 (2019).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Purkayastha, A., Guarnieri, G., Mitchison, M. T., Filip, R. & Goold, J. Tunable phonon-induced steady-state coherence in a double-quantum-dot charge qubit. npj Quantum Inf. 6, 27 (2020).

Article 
ADS 

Google Scholar
 

Guarnieri, G., Morrone, D., Çakmak, B., Plastina, F. & Campbell, S. Non-equilibrium steady-states of memoryless quantum collision models. Phys. Lett. A 384, 126576 (2020).

Article 
MathSciNet 
CAS 

Google Scholar
 

Latune, C. L., Sinayskiy, I. & Petruccione, F. Heat flow reversals without reversing the arrow of time: The role of internal quantum coherences and correlations. Phys. Rev. Res. 1, 033097 (2019).

Article 
CAS 

Google Scholar
 

Çakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 102, 042111 (2020).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Francica, G. et al. Quantum coherence and ergotropy. Phys. Rev. Lett. 125, 180603 (2020).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Baumgratz, T., Cramer, M. & Plenio, M. B. Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Donald, M. J. Free energy and the relative entropy. J. Stat. Phys. 49, 81 (1987).

Article 
ADS 
MathSciNet 

Google Scholar
 

Deffner, S. & Lutz, E. Generalised Claussius inequality for nonequillibrium quantum processes. Phys. Rev. Lett. 105, 170402 (2010).

Article 
ADS 
PubMed 

Google Scholar
 

Plastina, F. et al. Irreversible work and inner friction in quantum thermodynamic processes. Phys. Rev. Lett. 113, 260601 (2014).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Spohn, H. Entropy production for quantum dynamical semigroups. J. Math. Phys. (N.Y.) 19, 1227 (1978).

Article 
ADS 
MathSciNet 

Google Scholar
 

Spohn, H. & Lebowitz, J. Irreversible thermodynamics for quantum systems weakly coupled to thermal reservoirs. Adv. Chem. Phys. 38, 109 (1978).

CAS 

Google Scholar
 

Esposito, M., Lindenberg, K. & Van den Broeck, C. Entropy production as correlation between system and reservoir. New J. Phys. 12, 013013 (2010).

Article 
ADS 
MathSciNet 

Google Scholar
 

Deffner, S. & Lutz, E. Nonequilibrium entropy production for open quantum systems. Phys. Rev. Lett. 107, 140404 (2011).

Article 
ADS 
PubMed 

Google Scholar
 

Guarnieri, G., Landi, G. T., Clark, S. R. & Goold, J. Thermodynamics of precision in quantum nonequilibrium steady states. Phys. Rev. Res. 1, 033021 (2019).

Article 
CAS 

Google Scholar
 

Camati, P. A. et al. Experimental rectification of entropy production by Maxwell’s demon in a quantum system. Phys. Rev. Lett. 117, 240502 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Ansari, M. H., van Steensel, A. & Nazarov, Y. V. Entropy production in quantum is different. Entropy 21, 854 (2019).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Ptaszyński, K. & Esposito, M. Entropy production in open systems: The predominant role of intraenvironment correlations. Phys. Rev. Lett. 123, 200603 (2019).

Article 
ADS 
PubMed 

Google Scholar
 

Francica, G., Goold, J. & Plastina, F. Role of coherence in the nonequilibrium thermodynamics of quantum systems. Phys. Rev. E 99, 042105 (2019).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Santos, J. P., Cèleri, L. C., Landi, G. T. & Paternostro, M. The role of quantum coherence in non-equilibrium entropy production. npj Quantum Inf. 5, 23 (2019).

Article 
ADS 

Google Scholar
 

Riechers, P. M. & Gu, M. Initial-state dependence of thermodynamic dissipation for any quantum process. Phys. Rev. E 103, 042145 (2021).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Varizi, A. D., Vieira, A. P., Cormick, C., Drumond, R. C. & Landi, G. T. Quantum coherence and criticality in irreversible work. Phys. Rev. Res. 2, 033279 (2020).

Article 
CAS 

Google Scholar
 

Anderson, P. W. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Jpn. 9, 316 (1954).

Article 
ADS 

Google Scholar
 

Kubo, R. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn. 9, 935 (1954).

Article 
ADS 
CAS 

Google Scholar
 

Cai, X., Feng, Y., Ren, J., Peng, Y. & Zheng, Y. Quantum decoherence dynamics in stochastically fluctuating environments. J. Chem. Phys. 161, 044106 (2024).

Article 
CAS 
PubMed 

Google Scholar
 

Cai, X. Quantum dephasing induced by non-Markovian random telegraph noise. Sci. Rep. 10, 88 (2020).

Article 
ADS 
CAS 
PubMed 

Google Scholar
 

Schriefl, J., Makhlin, Y., Shnirman, A. & Schon, G. Decoherence from ensembles of two-level fluctuators. New J. Phys. 8, 1 (2006).

Article 
ADS 
MathSciNet 

Google Scholar
 

Mottonen, M., de Sousa, R., Zhang, J. & Whaley, K. B. High-fidelity one-qubit operations under random telegraph noise. Phys. Rev. A 73, 022332 (2006).

Article 
ADS 

Google Scholar
 

Bergli, J. & Faoro, L. Exact solution for the dynamical decoupling of a qubit with telegraph noise. Phys. Rev. B 75, 054515 (2007).

Article 
ADS 

Google Scholar
 

Rossi, M. A. C. & Paris, M. G. A. Non-Markovian dynamics of single- and two-qubit systems interacting with Gaussian and non-Gaussian fluctuating transverse environments. J. Chem. Phys. 144, 024113 (2016).

Article 
ADS 
PubMed 

Google Scholar
 

Cialdi, S. et al. Experimental investigation of the effect of classical noise on quantum non-Markovian dynamics. Phys. Rev. A 100, 052104 (2019).

Article 
ADS 
CAS 

Google Scholar
 

Song, H., Chantasri, A., Tonekaboni, B. & Wiseman, H. M. Optimized mitigation of random-telegraph-noise dephasing by spectator-qubit sensing and control. Phys. Rev. A 107, L030601 (2023).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Dong, W., Paz-Silva, G. A. & Viola, L. Resource-efficient digital characterization and control of classical non-Gaussian noise. Appl. Phys. Lett. 122, 244001 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Basit, A., Ali, H., Badshah, F., Yang, X.-F. & Ge, G. Nonequilibrium effects on one-norm geometric correlations and the emergence of a pointer-state basis in the weak- and strong-coupling regimes. Phys. Rev. A 104, 042417 (2021).

Article 
ADS 
CAS 

Google Scholar
 

Abdi, M. & Zarei, M. Nonclassicality induced by nonstationary squeezed reservoirs. Phys. Rev. A 108, 062208 (2023).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar
 

Kuffer, M., Zwick, A. & Alvarez, G. A. Path integral framework for characterizing and controlling decoherence induced by nonstationary environments on a quantum probe. PRX Quantum 3, 020321 (2022).

Article 
ADS 

Google Scholar
 

Boettner, C. & Boers, N. Critical slowing down in dynamical systems driven by nonstationary correlated noise. Phys. Rev. Res. 4, 013230 (2022).

Article 
CAS 

Google Scholar
 

Cakmak, B. Ergotropy from coherences in an open quantum system. Phys. Rev. E 102, 042111 (2020).

Article 
ADS 
MathSciNet 
CAS 
PubMed 

Google Scholar
 

Mula, B. et al. Ergotropy and entanglement in critical spin chains. Phys. Rev. B 107, 075116 (2023).

Article 
ADS 
CAS 

Google Scholar
 

Choquehuanca, J. M. Z., Obando, P. A. C., de Paula, F. M. & Sarandy, M. S. Qubit dynamics of ergotropy and environment-induced work. Phys. Rev. A 109, 052219 (2024).

Article 
ADS 
MathSciNet 

Google Scholar
 

Martens, C. C. Communication: Decoherence in a nonequilibrium environment: An analytically solvable model. Chem. J. Phys. 133, 241101 (2010).

Article 
ADS 

Google Scholar
 

Martens, C. C. Quantum dephasing of a two-state system by a nonequilibrium harmonic oscillator. J. Chem. Phys. 139, 024109 (2013).

Article 
ADS 
PubMed 

Google Scholar
 

Lombardo, F. C. & Villar, P. I. Nonunitary geometric phases: A qubit coupled to an environment with random noise. Phys. Rev. A 87, 032338 (2013).

Article 
ADS 

Google Scholar
 

Schiro, M. & Mitra, A. Transient orthogonality catastrophe in a time-dependent nonequilibrium environment. Phys. Rev. Lett. 112, 246401 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Peronaci, F. & Schiro, M. Transient dynamics of d-wave superconductors after a sudden excitation. Phys. Rev. Lett. 115, 257001 (2015).

Article 
ADS 
PubMed 

Google Scholar
 

Bhupathi, P. et al. Transient dynamics of a superconducting nonlinear oscillator. Phys. Rev. Appl. 5, 024002 (2016).

Article 
ADS 

Google Scholar
 

Oviedo-Casado, S. et al. Phase-dependent exciton transport and energy harvesting from thermal environments. Phys. Rev. A 93, 020102 (2016).

Article 
ADS 

Google Scholar
 

Cai, X. & Zheng, Y. Decoherence induced by non-Markovian noise in a nonequilibrium environment. Phys. Rev. A 94, 042110 (2016).

Article 
ADS 

Google Scholar
 

Cai, X. & Zheng, Y. Quantum dynamical speedup in a nonequilibrium environment. Phys. Rev. A 95, 052104 (2017).

Article 
ADS 

Google Scholar
 

Cai, X. & Zheng, Y. Non-Markovian decoherence dynamics in nonequilibrium environments. J. Chem. Phys. 149, 094107 (2018).

Article 
ADS 
PubMed 

Google Scholar
 

Cai, X., Meng, R., Zheng, Y. & Wang, L. Geometry of quantum evolution in a nonequilibrium environment. Europhys. Lett. 149, 094107 (2018).


Google Scholar
 

Anderson, P. W. A mathematical model for the narrowing of spectral lines by exchange or motion. J. Phys. Soc. Jpn. 9, 316 (1954).

Article 
ADS 

Google Scholar
 

Kubo, R. Note on the stochastic theory of resonance absorption. J. Phys. Soc. Jpn. 9, 935 (1954).

Article 
ADS 
CAS 

Google Scholar
 

Kubo, R., Toda, M. & Hashitsume, N. Statistical Physics II: Nonequilibrium Statistical Mechanics (Springer, 1985).

Book 

Google Scholar
 

van Kampen, N. G. Stochastic Process in Physics and Chemistry (North-Holland, 1992).


Google Scholar
 

Ban, M., Kitajima, S. & Shibata, F. Relaxation process of quantum system: Stochastic Liouville equation and initial correlation. Phys. Rev. A 82, 022111 (2010).

Article 
ADS 

Google Scholar
 

Cai, X. & Zheng, Y. Quantum dynamical speedup in a nonequilibrium environment. Phys. Rev. A 95, 052104 (2017).

Article 
ADS 

Google Scholar
 

Breuer, H. P., Laine, E. M. & Piilo, J. Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Rivas, Á., Huelga, S. F. & Plenio, M. B. Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010).

Article 
ADS 
MathSciNet 
PubMed 

Google Scholar
 

Chruściński, Dariusz & Maniscalco, S. Degree of non-Markovianity of quantum evolution. Phys. Rev. Lett. 112, 120404 (2014).

Article 
ADS 
PubMed 

Google Scholar
 

Haseli, S. et al. Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014).

Article 
ADS 

Google Scholar
 

Haseli, S., Salimi, S. & Khorashad, A. S. A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf. Process. 14, 3581–3594 (2015).

Article 
ADS 
MathSciNet 

Google Scholar
 

Salimi, S., Haseli, S., Khorashad, S. & Adabi, F. The role of the total entropy production in the dynamics of open quantum systems in detection of non-Markovianity. Int. J. Theor. Phys. 55, 4089–4099 (2016).

Article 
MathSciNet 

Google Scholar
 

Fanchini, F. F. et al. Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014).

Article 
ADS 

Google Scholar
 

Chanda, T. & Bhattacharya, S. Delineating incoherent non-Markovian dynamics using quantum coherence. Ann. Phys. 366, 1 (2016).

Article 
ADS 
MathSciNet 
CAS 

Google Scholar